SPECTRAL SYNTHESIS FOR THE CANTOR SET

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Cantor Set

Analysis is the science of measure and optimization. As a collection of mathematical fields, it contains real and complex analysis, functional analysis, harmonic analysis and calculus of variations. Analysis has relations to calculus, geometry, topology, probability theory and dynamics. We will focus mostly on ”the geometry of fractals” today. Examples are Julia sets which belong to the subfiel...

متن کامل

The Cantor Set 1

The articles [10], [4], [12], [11], [7], [13], [2], [3], [6], [8], [5], [1], and [9] provide the notation and terminology for this paper. Let Y be a set and let x be a non empty set. Note that Y 7−→ x is non-empty. Let X be a set and let A be a family of subsets of X . The functor UniCl(A) yields a family of subsets of X and is defined as follows: (Def. 1) For every subset x of X holds x ∈ UniC...

متن کامل

A Tame Cantor Set

A Cantor set is a non-empty, compact set that has neither interior nor isolated points. In this paper a Cantor set K ⊆ R is constructed such that every set definable in (R, <,+, ·,K) is Borel. In addition, we prove quantifierelimination and completeness results for (R, <,+, ·,K), making the set K the first example of a modeltheoretically tame Cantor set. This answers questions raised by Friedma...

متن کامل

Translating the Cantor set by a random

We determine the constructive dimension of points in random translates of the Cantor set. The Cantor set “cancels randomness” in the sense that some of its members, when added to Martin-Löf random reals, identify a point with lower constructive dimension than the random itself. In particular, we find the Hausdorff dimension of the set of points in a Cantor set translate with a given constructiv...

متن کامل

Nonarchimedean Cantor set and string

We construct a nonarchimedean (or p-adic) analogue of the classical ternary Cantor set C. In particular, we show that this nonarchimedean Cantor set C3 is self-similar. Furthermore, we characterize C3 as the subset of 3-adic integers whose elements contain only 0’s and 2’s in their 3-adic expansions and prove that C3 is naturally homeomorphic to C. Finally, from the point of view of the theory ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the National Academy of Sciences

سال: 1956

ISSN: 0027-8424,1091-6490

DOI: 10.1073/pnas.42.1.42